Mid-Semester Exam - Measure Theoretic Probability Total marks: 35 - Time: 2h30m Answer any five questions and each question is worth 7 marks

1. Let (X, \mathcal{B}, μ) be a measure space.

(i) if A and B are measurable sets such that $A \subset B$, then show that $\mu(A) \leq \mu(B)$.

(ii) if (E_i) is a countable collection of measurable sets, then show that there is a disjoint collection (F_i) of measurable sets such that $F_i \subset E_i$, $\cup E_i = \cup F_i$ and $\mu(\cup E_i) \leq \sum \mu(E_i)$.

- 2. Let $E \subset \mathbb{R}$ such that $m^*(E) < \infty$ where m^* is the Lebesgue outer measure. Then show that E is Lebesgue measurable if and only if to each $\epsilon > 0$, there exists $U \subset \mathbb{R}$ such that U is a finite union of open intervals and $m^*(U\Delta E) < \epsilon$ where $U\Delta E = U \setminus E \cup E \setminus U$.
- 3. Let (X, \mathcal{B}) be a measurable space. Let f and g be two real-valued measurable functions. Then show that f + g, f g and fg are measurable functions.
- 4. Let (f_n) be a sequence of non-negative measurable functions on a measure space (X, \mathcal{B}, μ) .

(i) Show that $\int (\liminf f_n) d\mu \leq \liminf \int f_n d\mu$.

(ii) In addition if F is an integrable function such that $f_n \leq F$ a.e on X, then prove that $\int (\liminf f_n) d\mu \leq \liminf \int f_n d\mu \leq \limsup \int f_n d\mu \leq \int (\limsup f_n) d\mu$.

(iii) Give a counter-example to show that $\limsup \int f_n d\mu \leq \int (\limsup f_n) d\mu$ is not always true for sequences of non-negative functions.

5. (i)Let (X, \mathcal{B}, μ) be a finite measure space. Let (f_n) be a sequence of bounded real-valued measurable functions and (f_n) converges uniformly to a function f on X. Then show that f_n is uniformly bounded and $\lim \int f_n = \int f < \infty$.

(ii) Let f be a Riemann-integrable function on a bounded interval [a, b]. Then show that f is measurable. 6. (i) Let Z be a non-empty set and \mathcal{M} be a non-empty collection of subsets of Z. Then show that there is a smallest monotone class containing \mathcal{M} .

(ii) Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be two complete measure spaces. Show that there is a smallest monotone class \mathcal{M} containing all elementary sets in $X \times Y$ and \mathcal{M} is a σ -algebra.

7. Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be two complete σ -finite measure spaces. Let h and g be real-valued integrable functions on X and Y respectively. Let f(x, y) = h(x)g(y) for all $(x, y) \in X \times Y$. Then show that f is integrable on $X \times Y$ and $\int fd(\mu \times \lambda) = (\int hd\mu)(\int gd\lambda)$.